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ABSTRACT

In order to determine the Fourier transform of a quasi-periodic time
series (linear problem), or the power spectrum of a stationary random
time series (quadratic problem), it is desirable that data be recorded
without interruption over a long time interval. In practice, this may
not be possible. The effect of regular interruption such as the day/
night cycle is well known. We here investigate the effect of irregular
interruption of data collection (the "breaking" of the window function)
with the simplifying assumption that there is a uniform probability »p
that each interval of length T , of the total interval of length T = NT,
yields no data.

Por the linear case we find that the noise-to-signal ratio will
have a (one-sigma) value less than € if N exceeds p-l(l-p)e-z.

For the quadratic case, the same requirement is met by the less restric-
tive requirement that N exceed p-l(l-p)e-l.

It appears that, if four observatories spaced around the earth were
to operate for 25 days, each for six hours a day (N = 100), and if the
probability of cloud cover at any site on any day is 20Z (p = 0.8),
the r.m.s. noise-to-signal ratio is 0.25%7 for frequencies displaced
from a sharp strong signal by 15 pHz. The noise-to-signal ratio drops

off rapidly if the frequency offset exceeds 15 uHz.



EXAMINATION OF TIME SERIES THROUGH RANDOMLY BROKEN WINDOWS

I. INTPODUCTION

In many astrophysical problems one is concerned with the study of
time series. It often happens that the property of particular interast
is the spectrum of the time series. In principle, one may determine a
time series to a prescribed accuracy by making measurements, without
interruption, over a sufficiently long time interval. In practice, the
length of time over which the variables may be measured will be limited.
Moreover, measurements may necessarily be interrupted (or otherwise impaired)
for one reason or another. The relationship of the spectrum determined
by limited, interrupted measurements to the intrinsic spectrum has been
the subject of many investigations, as recently reviewed by Deeming (1975).

If the original time series is denoted by x(t), one may regard the

measurements y(t) as being determined by

y(t) = £(t) x(t), (1.1)

where f£(t) is the "window function.” We regard x, y and f as being simple
scalar functions but the procedure may be generalized to replace x, y by
vectors and f by a tensor.

We use the Fourier transform notation

x(t) -/dm e 0t 2 w) (1.2)
x(@) = 51; dtel®t x(t) (1.3)

where the limits of integration are to be taken to be -® to + = if other

limits are not explicitly specified.



If we are interested in determining x(w), the Fourier transform of

the time series x(t), then we may use the relation
¥ (@) -fim' flw") X(w=-w") (1.4)

to relate the Fourier transform of the measured time series y(t) to that
of the original time series x(t).
We are interested in the possibility that f(t) may be regarded as a

random variable, expressible as
£(t) = F(t;al,az,...,an) , (1.5)

where 0158y 0. 00y are independent random variables with spezified expec-
tation distributions. By the central limit theorem (Papoulis, 1965), we
expect that the random variable f (or its Fourier transform E) will have
a distribution approximately Gaussian in form if N is not a small number,
so that an adeguate representation of f would be given by its mean <E>
and its standard deviation o(f).

If, on the other hand, x(t) is a random time series, we will be

concerned with the autocorrelation function Rx(tl defined by
R (£) = <x(t') x(c'+t)>, (1.6)

and the power spectrum of the time series, defined as the Fourier transform

of Rx(t):
R_(t) -/;m e-mtsx(w), (1.7
5 () = 515 drel®t R (£). (1.8)



On noting that
<E@ X WID> =5 (w) §w+a') (1.9)
and evaluating <y(w) ¥ (w')> , we may verify that

sy(m) - /dcu' ww') S, (w-au'") (1.10)

where
w(w) = £(w) £ (-w). (1.11)

Clearly the function W(w) represents the capability of the measurement
process, described by the "window function" f£(t), to determine the power
spectrum Sx(m). The function W(w) may be expressed in terms of the inde-

pendent random variables
w(w) = W(w;al,az,...,au). (1.12)

Once again, unless N is a small number, we expect that the distribution
of w will be approximately Gaussian so that it may be characterized by
its mean value <w> and standard deviation o(w).

This article was prompted by a problem related to the determination
of normal modes of oscillatiorn of the sun, as determined by measurement of
the photospheric velocity field. Measurements have been presented by
Deubner (1975) and by Rhodes et al. (1977), and their theoretical inter-
pretation discussed by Ulrich and Rhodes (1977) and by Ulrich et al., (1978).
For optimum determination of the power spectrum of the velocity field
(expressed as a function of wave number), it is clearly desirable to make
observations without interpretation over as long an interval as possible.

Away from polar regions, observations from a single station are interrupted



by the day-night cycle which leads to unacceptable aliasing of the data.
Observations made from a spacecraft in polar orbit would obviously yield
un-aliased data of higher quality and higher frequency resolution. Obser-
vations made from the south pole during austral midsummer can lead to
several days of uninterrupted observation and to still longer intervals
with occasional, irregular interruption. It is also possible to select
three or four stations around the earth which, in the absence of any cloud
cover, could give continual coverage of the sun for many weeks. However,
one must anticipate that some of the data would be lost by cloud cover.

It is clearly desirable that one should be able to make some esti-
mate of the accuracy with which oscillation modes may be determined when
it appears possible to observe the sun over a long interval of time losing
some blocks of time because of cloud cover. The purpose of this article
is to develop a model which enables us to address problems of this type.
After presenting a few general formulas, we shall simplify the problem
considerably by supposing that observations are made over a& large number
i of equal time intervals, each of length T, so that the total time

interval T 1is given by
T=Nr. (1.13)

With certain additional simplifying assumptions, we shall consider the
statistical properties of the functions f(w) and w(w) which are repre-

sentative of "randomly broken" window functions.



I1. MATHEMATICAL MODEL
In the case that the window function £(t) is expressible in the form
(1.5), in terms of & number of random variables, we wish to study the distri-
bution of the functions E(m), w(w), entering equations (1.4) and (1.10).
We suppose that the distribution of the variables oy to a, is given by
the probability function P(al, caey aN) such that P(al, ...,clu)dal ooy daN

is the probability of finding al in the range o, to a1-+dal, etc. Then the

1
expectation value of the quantity E(w) is given by

< E(WD -ﬁluu Pp(@) Flwia,,...,a0), (2.1)

where d'o denotes da, ..., da., and Py(a) denotes P(aj, ..., ay). If we

use the following notation for the variance of a complex variable of a

complex variable z,
o?(2) = 0¥z + o¥(z)), (2.2)

where z and z, are the real and imaginary parts of z, then noting that

£(-w) is the complex conjugate of f(m), we gee that

¢ (FW) = <E@ E 0> -<Ewd <E-0> . (2.3)
The first term on the right-hand side may be evaluated from
- - N ~ -
<vw(@D =<EW) £ (~w)> = ﬁ @ B(a)F(w;a,,..0,0) F(-w;ay,...,00) (2.4)
We see that equation (2.4) also gives the expectation value of the
"window spectrum” w(®) which appears in equation (1.10) and is appropriate

for the discussion of stationary random time series. The variance of this

function is given by

0% (W) = <w(w) W (0> - W) <wl-w)d> (2.5)



where

2

2
Kwlw) wi~w)D> -/duarn(u) {i(“""l""""ni i(-m.al. ceen )i o (2.6)

As indicated in the introduction, we intend to consider the case that
the observing time t, to tye of length T, is divided into N equal intervals

bounded by times tl, t.z, ..+ where

tn - to +nt (2.7)

so that we may adopt the form

N

F(t;al. ""°‘N) - E o

n=l

h(e-t ) -h(t—tn)} (2.8)
where h(t) is the Heavyside function:

n(e) = 0 if t<0,1
2.9)

= 1 4if t>0. ‘

We also assume that the intervals are statistically independent, so that

we may write

%.(al) dal}"'}’?@(ar{)dau} . (2.10)

If we assume that, for each interval, there is a (uniform) probability p

N .
PN(a)d a = P(o.l, cees aN)dal, caey duN =

that the window is open and probability 1 -p that it is closed, then
P(a) = p 8(a -1) + 1-p)S (o). (2.11)
In evaluating (E(m)), given by (2.1), we will use

<an> =p. (2.12)

In evaluating the quantity given by equation (2.4), we will need to

\

o which is clearly given by p2 if m¥ n but by p if m = n.

evaluate (am a
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Hence
<a o D= p2 + (p-pz) 5, (2.13)
an ;mn

vhere 6m is the Kronecker function. In evaluating the quantity given
by (2.6), we need to evaluate the expectation value of amunupqu. By con=-
siderii s the various possibilicies (m,n,p,q all different: two of them
the same, etc.) we find that

4 3 4
<°‘n“n“p°q>'p +(p -p)(5m+ smp+6.q+6 +6 +68 )

2 3 4
+ (" -3p +2p )(6npq + Gmpq + Gnnq + Gnnp)

+ (p - 492 + 693 - 3p") Gm , (2.14)

Pq

where § =1 ifm=ne=p otherwise 0, and § is defined similarly.
mnp wnpq



III. EVALUATION OF MODEL
For simple (non-random) time series, equation (1.4) gives the relation-
ship between the Fourier transforms of the original and measured time series.
In this context, the properties of the random window function f(t) may be
characterized by <§(w)) and 02(5).

On substituting the form (2.8) into (1.5), we find that

O N S —1- il @ nin(-}WT)ewlto+ (n-%)T (3.1)
On using (2.1) and (2.12), we obtain
1
<Ew)>D --21'1; Tp sinc(%w'r) e_z-iw(t°+tn) . (3.2)
where sinc O = 6_1 sin 6.
On using (2.4), we find that
<w(w)>= (~21‘_’-T-)2 'r2 [pzuincz (%-m‘r) + N-lp(l- p)sincz(%m)] . (3.3)
Hence, using (2.3), we obtain
Y (f) (‘_ )ZTZN -p) sincz(% m‘r). (3.4)

For evaluating the effects of 'breaking" of the window function, it
is convenient to normalize the standard deviation with respect to the maxi-
mun value of f(w), which is the value at w = 0. Accordingly, we introduce

the definition

_c(f(w))
SRS () -3

For the case under consideration, this has the form

L, (3.6)

-1/2 -1/2
P 2

Zl(m) = N (1-—;))]'/2 |sinc



For discussion of the properties of randomly broken windows in the
study of stationary random time series, it is necessary to evaluate the

mean value and standard deviation of w(w). The former is given by equa-

tion (3.3). The first term inside the brackets has the same form as arises

in the non-random case (p = 1). The second term r=presents a change in the

wean spectrum, so it is convenient tc iatroduce the symbol A2 for the

ratio of the additional term to the meximum value of the principal term:

8, = N1 5! (1-p) sinc? (%wr) . 3.7)

On writing equation (2.6) in the simpler form
Cv(@w(~w)> = <F(w;a)F(w;a)F(=-w; a)F(-w; a)d> (3.8)

and using equations (1.3) and (2.8), we see that

iwt iwg it iwt

1 m m-1 n n-1

<wiw)w(~w)> = <a aao >(e -e )(e - e )
27w amnzpq nopq

-iwt ~fut ~{wt -lwt )
x(e P_e. p-l)(e q9_e 91/ 3.9

On using equation (2.14), we see that this may be expressed in the form

114 3 4 .
w(@w(-w)> = pE, + (p”-p )(E,+E5 + 4E.)
@yt 1 2772 3
+ z(p2 - 3p3 + Zp&)(Ea + E:) (3.10)

v (e - 6p? + 6p° - 3pY) £

where



.. {§ (eiwtm -eimt.'_l): t § (‘wtn _.i‘“"n-1) (.-imt“ -e-mtn_1)2€ '

iwt ilwe 2 -iwt ~-iwt 2

(e ® _, m-1)(e n_, m-l).

s M

On evaluating these sums, we find that

L]
L}

16 s:l.n“(l w‘r) .

1 2
)
- 2{1 2{1 _\siouT
Ez 16 sin (2 w'r)sin (Em)——_-lim\'r .
2(1 2(1
E3 = 16 N sin (-i(uT) sin (in) , >(3.12)
2{1 2{1

El‘ 16 sin (3 m'éain (3 w‘l’)

/

E.= 16N siné(% w'() .

Hence equation (3.10) is found to be expressible as

10



4
<w(@) w(-w)> = (-2-'-!;-’-) {p‘ sincl.(% mT)

+ 2(p3— p4 ) N-z sincz(-;— m‘l‘) sincz(%- w‘r) :—i—%ﬁ—‘g—%

+ 4(p3- p4) N-l sincz(%m'l‘) sincz(% cuT)

+ 4(p2- 3p3 + 2p4) N-z sinc2<—12—m‘l') sincz(-;—_' m‘r)

4\ -
+ (p - lopz + 6p3 -3 )N 3 sincl‘(-;-ﬂ‘l‘): . (3.13)

On using equations (2.3) and the definition

g (w((u))

T (W) & ————s
2 (5177 TP)Z

(3.14)

we find that

Zz(w) = 12 N'lp'l(l-p) sincz(%m'r)sincz(%m)

+ 2N-2p-1(1-p) sincz(% mT)sincz(%M‘r)

sinwT
sinwT

+ N-zp-2(3 - 10p + 7p2) sincz(% w’I‘) sincz(% w'r)
ll/2

+ N-3p-3(1 - AP + 6P2 - 3p3) sincé(% (L)T)’ . (3.15)

11



IV. DISCUSSION

We see from the preceding sectior that the effect of a random "break-
ing" of the window function is to produce an aliasing of any signal. This
effect is described by the function Zl or by Az and 22 as given by equa-
tions (3.58), (3.7) and (3.15).

For the "linear" problem, as described by equation (1.4) the mean
Fourier transform of the window function, as given by equation (3.2),
has the same form as it does in the non-random case, although it is
reduced by a factor p. The standard deviation is characterized by 21’
defined by equation (3.5) and given by equation (3.6).

It is convenient to introduce the notation
W, = 2T °, w_= 2T -, (4.1)

On noting that sinc 6 < 1 for 6 < 1, and that ls*nc 6| < 6-1 for 8 > 1,

we see that Zl < S1 where

5, (@) = 12,7120 312 s

(4.2)

-1/2p-1/2 /

2(wT/m) y W 2w .

(l--p)1 r

Sl(m) = N

Hence the aliasing is most severe within the range of a few times w, of
the strongest signal,

We may infer from the above restriction the minimum number N1 of
intervals necessary to ensure that 21 is below an assigned level € for a

given value of p.

We see from (4.2) that we require N >=lehera

-2

N, = (1-p)p‘1s (4.3)

12



If, for instance, p = 0.8 and we require that )31< 0.05, N must be at
least 100.

For the "quadratic" problem in which we are determining the spectrum
of a stationary random time series, the aliasing is described by the
functions Az(w) and Zz(m) given by equations (3.7) and (3.15).

We see from equation (3.3) that the second term in brackets is smaller
than the envelope of the first term, and so may be neglected, for w< w, ,

where

1/2p-1/2m (4.4)

w, = Nl/z(l—p) T

A

For w > Wps the second term produces a "tail" to the principal contribu-
tion to <w(w)> . By an argument similar to that leading to equation (4.2),

we find that A, < D, where

2 2

D, (w) = Vi la-p , wc W
(4.5)
D, = N p  -p(w /), w>a.

Now consider the four terms in the second bracket in equation (3.15).

It 1s clear that the third term may be ignored by comparison with the first
since 1t has a similar dependence on ® but includes an extra factor N_l.
The second term may also be ignored by comparison with the first: the
extra factor N-l (sin wT)/(sin wT) has a maximum value of unity, and an
RMS value of order of N-llz.
In comparing the fourth term by comparison to the first, we see that
the ratio is given by
sincz(im’r)
R = o(p) :

N® sinc 2(% wr)

(4.6)

13



where

2
q(p) =12t .7

2p
It is easily verified that Q(p) < 0.5 in the range 0.5 p< 1. Hence
R has a maximum value of order 0.5 at values of @ for which wT = 2nm. We
find that, when R is averaged over frequency, it varies with N as N-l.
Hence we may, to sufficient approximation ignore the fourth term and so
replace (3.15) by

1/2N-1/29~1/2

T 2(ao) x 2 a- p)llz|sinc(%w'r)”sinc(%m)l. %.%)

We find that 22 < 82, where

s, = 2/ Y20 )i/, v oy,
W,
1/2.-3/2 ~1/2 1/2( “r \?
Sz(m) =2 N P 1-p) (T) s W cuT . /

We see that, for the same values of N and p, the maximum value of 22 is

21/2 times larger than the maximum value of Zl. Hence the minimum number

N2 of intervals necessary to ensure that I, 1s below an assigned level,

2

for various values of p, is twice the corresponding value of N given by

1’
equation (4.3).

However, the quadratic case is more complicated than the linear case
in that Zz(w) is more complicated than 21 (w), and Az(w) is nonzero (whereas

Al(m) is zero and has been neglected).

14



On noting that the dominant term of (3.3) (that which survives in the

nourandom case that p = 1) varies as ((n,r/w)2 for w > Oy

is less than the tail of the dominant term, nd s0 may be neglected, for

we see that Zz(m)

w < mz , where

o = 27 U212 (1 y-172,

. T * (4.10)

On the other hand, we find that Sz(m) is less than Dz(w) for w > w , where
c

o = 21/2N1/2p1/2(1-p)-1/2mT = 20 . (4.11)

Hence we may, to adequate approximation, ignore Zz(w) in assessing the
aliasing which occurs in the quadratic case.
We see from (4.5) that the minimum value of N necessary to ensure

that Az(m) is less than some maximum value € is given by N > NZ’ where

-1 -1
N, = p (l-peT . (4.12)

We see from (4.3) thar N, is smaller than Nl by the factor ¢. Hence

2
aliasing is likely to be less serious in the quadratic case than .t is in
the linear case.

In order to assess the implications of the present model concerning
ground-based observations of gsolar oscillations, one will need to have
detailed estimates of the expected spectrum (in particular, the spacing
and relative power of nearby lines) and the expected cloud cover at three
or four observatories positioned round the world. It is also desirable
that the present model should be extended by considering separate values

of p for each of the observatories, and possibly by taking into account

the correlation between cloud cover on consecutive days.

15



Nevertheless, we can illustrate the results of this model by consider-
ing a hypothetical situation. Suppose that four observatories are located
around the world in such a way as to give continuous coverage (in the
absence of cloud cover), and that these observatories are operated for 25
days. Then N = 100. Suppose that, for any ohservatory on any day, there
is 20X probability of cloud cover so that p = 0.80. We find from (4.1)
that (using v = w/2m), v, = 1510 Hz, For frequencies less than this value,
(4.5) shows that the aliasing amounts to 0.25% or less. For frequencies
above 151 Hz, the aliasing drops off rapidly.

Although it will be necessary to make more detailed and specific
calculations to draw definite conclusions, it appears from the above simple
exanmple that it may be possible to carry out high-quality studies of solar
oscillations from a chain of ground-based observatories.

This work was supported in part by NASA Grant NGL 05-020-272, Office
of Naval Research Contract N0O0014-75-C-0673, and the Max C. Fleischmann

Foundation.



REFERENCES

Bendat, J.S., and Piersol, A.G. 1966 (New York: Wiley), p. 200.
Deeming, T.J. 1975, Ap. Sp. Sci., 36, 137.
Deubner, F.L. 1975, Astr. Ap., 44, 371.

Papoulis, A. 1965, Probability, Random Variables and Stochastic Processes

(New York: McGraw-Hill), p. 266.
Rhodes, E.J., Ulrich, R.K., and Simon, G.W. 1977, Ap. J., 218, 901.
Ulrich, R.K., and Rhodes, E.J. 1977, Ap. J., 218, 521.

Ulrich, R.K., Rhodes, E.J., and Deubner, F.L. 1979, Ap. J., 227, 638.

17



	GeneralDisclaimer.pdf
	1981011306.pdf
	0004A03.TIF
	0004A04.TIF
	0004A05.TIF
	0004A06.TIF
	0004A07.TIF
	0004A08.TIF
	0004A09.TIF
	0004A10.TIF
	0004A11.TIF
	0004A12.TIF
	0004A13.TIF
	0004A14.TIF
	0004B01.TIF
	0004B02.TIF
	0004B03.TIF
	0004B04.TIF
	0004B05.TIF
	0004B06.TIF
	0004B07.TIF


